
su(n) and sp(2n) WZW fusion rules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 391

(http://iopscience.iop.org/0305-4470/24/2/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 13:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 391-400. Printed in the UK 

su(n) and sp(2n) WZW fusion rules 
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Department of Mathematics, Concordia University, Montrdal, Quebec, Canada H3G 
1 M8 

Received 18 June 1990, in final form 10 September 1990 

Abstract .  Fusion rules for wzw models based on m(n) and sp(2n) are considaed. 
Using the results of Kac and Walton it is shown that these fusion rules may be 
computed using Young diagram methods by performing extra modifications. These 
modifications take the form of the r e m o d  of boundary strip. which bear a stiking 
resemblance to the modifications necessary when performing tensor products for these 
algebras. This fact is exploited to exhibit a duality between the fusion rules of $U(") 
a t  level k and su(k) at level n and also between sp(2n) at level k and sp(2k) at level n. 
The former duality has been discwed in the context of two-dimensional statistical 
mechanics by Kuniba and Nakanishi and also by Naculich and Schnitzer in the case 
of wzw models and Goodman and Wend for Hecke algebras at mots of unity. For 
4 3 )  a manifestly positive combinatorial procedm for computing fusion rules and 
a generating function for the fusion coefficients are given 

1. Introduction 

There has been much interest recently in the classification of rational conformal field 
theories. These are two-dimensional (2D) conformally invariant theories characterized 
by the property tha t  the physical Kilbert space 71 splits into a finite number of irre- 
ducible representations of the chiral algebra A, $A,. The  form of this chiral algebra 
is determined by the particular model, but always contains a t  least the identity oper- 
ator together with the left and right copies of the Virasoro algebra. Primary fields are 
those which create highest weight states of the chiral algebra from the vacuum. Fusion 
rules are an  important aspect of the anaysis of rational conformal field theories, since 
the fusion coefficients NAP" are the number of independent couplings of the primary 
fields A ,  p and v. In general fusion rules may be calculated by considering the action 
of modular transformations on characters (Verlinde 1988). For level k WZW models, 
however, it has recently been shown that the fusion rules may be calculated directly 
using techniques similar to those used in the  calculation of tensor product decompw 
sitions of finite-dimensional representations of finite-dimensional, complex, simple Lie 
algebras (Kac 1989, Walton 1989, Walton 1990). Here we make use of these results t o  
give algorithms for the computation of fnsion rules using Young diagrams for models 
based on su(n)  and sp(2n).  A consequence of this formulation is tha t  a natural duality 
is evident between standard tensor products and fusion rules. T h a t  this duality exists 
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for su(n) has been discussed by several authors (Goodman and Wend 1989, Kuniba 
and Nakanishi 1990, Naculich and Schnibzer 1990), hut that it also holds for sp(2n) 
appears to a new observation. 

There has also been interest recently in finding expressions for fusion rule coef- 
ficients that are explicitly non-negative integers. One would expect that for su(n) 
fusion rnles some variation of the Littlewood-Richardson procedure (Littlewood and 
Richardson 1934) should exist for calculating fusion coefficients. For 4 2 )  a simple 
algorithm has been found (Gepner and Witten 1986), but a general formulation is not 
known. Here we give a manifestly positive algorithm for computing 4 3 )  fusion rules 
and a generating function for them is derived (see also Cummins el a/ 1990b). 

2. Notation and review 

Consider 3 a complex, simple, finite-dimensional Lie algebra of rank T and g 3 T j  
the untwisted, affine Kac-Moody algebra constructed from T j  as a central extension 
of the loop algebra of Tj .  Denote by U ' ,  i = 0 .  . . r  the fundamental weights of g 
and d, i = 1 . .  . r  the fundamental weights of S. Then any weight X of g may be 
written as X = CL=, A i d  where Xi E Z are the Dynkin labels of A. We define 1, the 
projection of X t o  the weight space of 3, by 1 = CL=, A,Gi. The level of X is given by 
level(X) = CL=, Xip, where l? are the comarks of g (for su(n) and sp(2n) the comarks 
are all equal to one). For we set level(1) = ~ ~ = l ~ i p .  P+ = {A I X i  2 0 i = 0 . .  . r }  
is the set of integrable highest weights of g and P+ is the set of integrable highest 
weights of 3. 

There is a one to one correspondence between the primary fields of level k WZW 

models and the set P t  = {A E P+ I level(X) = k } ,  or equivalently the set P ,  = {I E 
P ,  I level(1) 5 k }  (Gepner and Wit.ten 1986) (the projection from P i  to P ,  1s a 
bijection since given k and level(X), X, is uniquely fixed). 

Recently i t  has been pointed out (Kac 1989, Walton 1990) that the fusion rules for 
these models may be calculated using an 'affinized' Racah-Speiser algorithm (Walton 
1989, Weyl 1939, Racah 1964, Speiser 1964). The proof of this algorithm uses the 
properties of affine Kac-Moody algebras, in particular the modular transformation 
properties of their characters. It is thus natural from this point of view to state the 
algorithm in terms of the affine Weyl group acting on weights of g. However, since in 
this case the affine Weyl group acts only on weights of level k + h  (his  the dual Coxeter 
number of ij), it is possible to project onto the weight space of T j ,  The advantage one 
gains in doing this is that the algorithm is now precisely that of Racah and Speiser 
with the Weyl group W of 9 replaced by an affine Weyl group CY,, which is the 
semidirect product of W with ( k +  h ) M .  In the cases considered liere M is the group 
of translations in the lattice generated by the long roots of T j  or equivalently the lattice 
generated by {W(B)},  where 6 is the highest weight of the adjoint representation ofS. 

Suppose X and p are two integrable highest weights of g of level k ,  then to apply 
this algorithm we consider the projected weights 1 and 2. We apply the Racah-Speiser 
algorithm as if we were computing the ordinary tensor product of two T j  representa- 
tions. In this case, however, W is replaced by W, and rather than reflect the weights 
into F ,  they are reflected into Ft. More succinctly, if N,", is the multiplicity of the 
primary field v in the fusion of X and p ,  and FEz is the multiplicity of the 3 repre- 

--i 

--iE . - 
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sentation i in the tensor product of 5 and ji, then the above algorithm implies (Kac 
1989, Walton 1990) 

where 

i f i j  = w ( T + p )  - p ,  for some w E W, 
otherwise 

~ ( w )  is the parity of w and p half the sum of the positive roots of 3. 
Young diagram methods exist (Littlewood 1950, King 1971, 1975, Black et  al 

1983) for computing tensor products of representations of classical Lie algebras. An 
important feature of these methods is that the calculations are performed in twostages. 
The first involves calculating for infinite rank, usually making use of the Littlewood- 
Richardson rule in some way. The result for any particular, finite rank is then found 
by using modification rules. These take the form of the removal of boundary strips 
from Young diagrams, together with signs depending on the geometry of the removed 
strip. These modification rules are obtained using certain determinantal expansions of 
general characters in terms of fundamental characters, together with the observation 
that the restrictions to finite ranks of fundamental characters are easy to evaluate 
(Newell 1951, Koike and Terada 1987). 

The modification rules for su(n) and sp(2n) are given in table 1. In this table 
partition labels for irreducible representations have been used (see Black et 0 l  1983 
for more details). Note that in addition to these rules, for su(n) any columns of length 
n may be deleted. The notation X - hi denotes the representation label obtained by 
taking the Young diagram FA corresponding to the partition X and then removing a 
boundary strip of length hi starting at the bottom of the first column and moving up 
and to the right. If the resulting Young diagram is not regular, i.e. is not the Young 
diagram of some partition, then the corresponding representation (or more precisely 
its character) is identically zero. The notation is such that el is the number of columns 
traversed by the covariant boundary strip (or simply the boundary strip in the case 
of sp(2n)) and El is the number of columns traversed by the contravariant boundary 
strip. Note that  A’ is the partition conjugate to A ,  which is the partition obtained 
by exchanging rows and columns in the corresponding Young diagram FA and so X i  
is the length of the first column of FA. To avoid confusion these modification rules 
will be referred to as rank modification rules. For su(n) there exist two kinds of rank 
modification rules, one for covariant Young diagrams and the other for mixed Young 
diagrams, i.e. diagrams representing tensor representations with both covariant and 
contravariant indices. The modification rules involving boundary strips are applied 
until the length of the boundary strip to be removed is negative, in which case the 
diagram is standard, or is zero, in which case the corresponding character is identically 
zero, or until an irregular Young diagram is produced. 

3. Fusion modification rules 

We may interpret equation (1) in terms of modification rules. First we calculate the 
ordinary tensor product of and Ti.  We can think of this step as calculating the fusion 
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Table 1. The su(n) and sp(2n) rank modification rules. 

rule for infinite level. The resulting highest weights are in F+, but not necessarily 
in Ft.  Suppose 7 is a weight in P+ that is not in Ft and that there is a V E Ft 
and w E Wk such that V = w ( 1  + i?) - 7. Then, according to equation (Z), N i p  
has  a contribution zgz with the sign given by the parity of w. Thus the problem 
of computing the fusion coefficients is reduced to finding, given an arbitrary f ,  a 
corresponding w and i7. Modification rules provide an algorithm for them. The idea 
is to use relatively simple transformations in W, the effect on the highest weights 
of which is easy to interpret combinatorially as the removal of boundary strips from 
Young diagrams. Each of these 'simple' transformations has  the property that the 
level of the transformed weight is less than the initial weight and lies either in Ft 
or corresponds to a character which is identically zero (this occurs when a irregular 
Young diagram is produced). Thus iterating the process either produces a weight in 
-k P ,  or zero. In principle it is possible after completing this process to construct w ,  
but in fact all we need is V and the parity of w. The former is produced directly by 
the algorithm and the latter may be found from the geometry of the strips removed. 

Table 2. Representation labels, level, dual C o x e t a  number and highest weight of 
adjoint representation for the simple Lie algebras. 

Algebra Representation labels Level i a 

4 n )  @;A}  PI t A1 n {Cll 
4 2 n )  (A) A1 n + l  (2) 

2n - I [I2] so(Zn+ 1) [XI A1 + A? 
[A; 11 

SO(27Z)  [AI A1 t A2 2" - 2 [PI  
[XI* A1 t A2 

[AiAIi A1 + A? + 1 
A 1  30 (21') 

18 (217 
e8 ( A )  

A1 
3 12 (2 : 0) 

e7 ( A )  
e6 ( J  : A )  
f 4  ( A )  A 1  + A ?  9 (12 )  

( A : A )  A 1  + A2 + 1 
92 ( A )  A1 4 (21) 

A 1  + A2 + 1 

For su(n) and sp(2n) a modification rule may be constructed in the following way. 
If a weight has level greater than R (the level of highest weights in  partition notation 
is 
partitions see Black e2 a/ (1983)), then perform a translation by - ( k + h ) Q .  In general 
this translation results in a weight that no longer lies in P+ and it  is necessary to 
apply transformations in W with  the twisted action to bring 'it back into F + .  It 
is known that this process can be given a combinatorial interpretation in terms of 
boundary strip removal, see for example (Black e2 a/ 1983). The interpretation of 

iii table 2; for co i iveen~~on~ the la;&ing Uf highest .W&Fbj by 
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this procedure in terms of boundary strip removals for su(n) and sp(2n) is given in 
table 3. For sp(2n) the situation is fairly straightforward, the notation A - h, means 
that a boundary strip of length h ,  is removed from the end of the first row of the 
corresponding Young diagram moving downward and to the left, r1 is the number of 
rows traversed by the strip. For covariant su(n) diagrams it is necessary to remove a 
strip from the end of the first row while a t  the same time adding one of the same length 
starting a t  the bottom of the first column at  the nth row (assuming that all columns 
of length n have been initially deleted). This modification rule has been derived by 
Goodman and Wend (1989)  in the context of Hecke algebras a t  roots of unity. I t  is also 
possible to state this modification rule for mixed Young diagrams when the addition 
of a boundary strip to the covariant diagram becomes the removal of a strip from the 
contravariant diagram. There is a stiking similarity between tables 1 and 3. To obtain 
the fusion modifications from the rank modifications it is only necessary to replace 
the rank n by the level k and interchange the roles of rows and columns (i.e. work 
with transposed Young diagram), provided for su(n) we consider only modifications 
of mixed diagrams. In fact if we consider the fusion of a purely covariant with a 
purely contravariant diagram then only mixed modifications are required, giving rise 
to a duality which is discussed later. As with standard tensor products the fusion 
modifications are applied until either the removal of a strip results in an irregular 
Young diagram, or the strip to be removed has negative length, or until it has length 
zero. The parity of the element w of W, may he calculated from the number of rows 
that the boundary strips traverse, as shown in table 3. 

Table 3. The m(n) and sp(2n) fusion modification rules, 

Algebra Modification Strip length 

su(n) 

sp(2n) ( A ) = ( - I ) r l t l ( X - h l )  

{ A )  = (-l)'lt'"tl { A  - hl + h,) hl = h ,  = AI - k - 1 2  0 
{.;X)=(-I)'L+'~+~{IL-;X-~~} hl = p l + A 1 - k - l 2 O  

hi = 2 ( A i  - k - 1) 2 0 

9.1. Examples 

3.1.1. 4 8 )  level 10. 

I I I I 1 1 - 1  t l  

Suppose that a representation labeled by the mixed partition {763231; 98Z41) has 
occurred in some fusion product. Since the lengths ofthe first columns of the covariant 
and contravariant diagrams is 7 we have hi = 7 + 7 - 8 - 1 = 5 2 0. So a boundary 
strip of length 5 must be removed from the covariant and contravariant diagram. 
Since both strips traverse two columns - the sign factor is (-1)'+'+' = - 1 .  This 
results in the standard diagram {76312; 9821'). Again, a modification is required 
since h i  = 5 + 5 - 8 - 1 = 1 2 0 and so strips of length 1 must be removed, which 
results in a further sign factor of -1. No more rank modifications are required since 
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{7631;9821} has h‘, = 4 + 4 - 8 - 1 = -1 .  The level, however, is 16 and so fusion 
modifications are needed. The first strip has length h ,  = 9 + 7 - 10 - 1 = 5 and 
its removal results in the diagram {5331;7521) - and a sign factor -1 .  Finally it is 
necessary to remove strips of length 1 yielding {4321; 6521) which has a level of 10. 
Since each strip removal produces a factor of -1 and there are four such removals, 
the final sign factor is +l .  Note that although in principle i t  is necessary to perform 
the rank modifications first and then the fusion modifications, in fact in this example 
we could have reversed the procedure, first removing the strips corresponding to the 
fusion modifications and then those corresponding to the rank modifications, without 
changing the final result. 

- 

9.1.2. sp(l0) level  9. 

(3) 

= -F 
The representation labelled by (5326) is not standard in sp(lO), but after two strip 
removals we obtain -(53Z3) which is. This has level 5 and so fusion modifications are 
required. Removing a strip of length 2 yields -(3223). Again note that the order of 
the rank and fusion modifications could have been reversed. 

4. Duality 

As previously noted, the similarity between fusion modifications and rank modifica- 
tions gives rise to a duality between the fusion rules for su(n) at level k and su(k) at  
level n and also sp(2n) at level k and sp(2k) at  level n .  For sp(2n) this duality is fairly 
straightforward. Consider the fusion of two sp(2n) representations (A) and ( p )  at  level 
IC. This may be computed by first finding the standard tensor product of (A) and ( p )  
using Young diagram methods (see Black el  a l  1983) and making use of the rank mod- 
ification rules of table 1 .  Finally the fusion modifications of table 3 are applied. The 
statement of duality is that transposing the resulting diagram3 gives the fusion of (A’) 
and (p’)  for sp(2k) at  level n .  I t  is known that this result holds when no modifications 
are necessary, i.e. for infinite level and rank, thus the only way t,hat this duality could 
fail would be if fusion and rank modifications did not ‘commute’. Fortunately this 
potential problem does not arise. The reason is that if we start with two integrable 
highest weights that are standard with regard to rank and level, then the boundary 
strips that have to he subtracted are fairly short. In fact they cannot reach the ‘main 
diagonal’ of the Young diagram. For example for the rank modifications we would 
have to have hi 2 A; or A; 2 2 n + 2  for the boundary strip to reach the diagonal. But 
the maximum depth of partition obtained from the product of two standard sp(2n) 
diagrams is 2n. A similar statement holds for the fusion modifications. Thus fusion 
modifications are restricted to the ‘top’ of the diagram while rank modifications are 
limited to the ‘bottom’ of the diagram, and so the order in which we perform them 
does not affect the final answer. 

The su(n) duality is best seen by considering the fusion of {I] and { p }  at  level k ,  
rather than the product of two covariant diagrams. Here {I} refers to a contravariant 
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representation of su(n) rather than the projection of a g weight. The statement of 
duality is that taking the transposes of the diagrams in the fusion of {I] and { p }  gives 
the fusion of {%’I and {p ’ }  in su(k) a t  level n ,  for mixed diagrams the covariant and 
contravariant diagrams are transposed separately. Once again the potential problem 
is the ordering of the modifications, and once again this does not occur because the 
removed strips do not reach the main ‘diagonal’. For example in the fusion modifica- 
tions of the diagram {q r ] ,  for the covariant strip to reach the main diagonal we must 
have h,  = a, + r, - k - 1 2 7, or a, 2 k + 1. But it follows from the algorithm for 
multiplying mixed Young diagrams that a, is at  most A, ,  which is less than or equal 
to k. 

4 .  I .  Ezamples 

4.1.1. su(8) level 10 and su(l0) level(8). 

~ 

If the representation {763231; 98Z41)urs in a fusion calculation for 4 8 )  at level 10, 
then as - we have seen i t  modifies to {4321;6521]. Duality iuplies that there should be a 
t e d 3 2 1 ;  43231] in the corresponding fusion for su(l0) a t  level 8. The representation 
{763Z31; 76261} occurs before modifications and the rank (fuslon) modifications of 
this term correspond to the fusion (ranxmodifications of {763231; 98241} and so the 
resulting modified diagram is indeed {4321; 43Z31}. 

4.1.2. sp( l0)  level 3 and sp(6) level 5.  

(5) 3 

Similarly the modifications of (5326) for sp(l0) a t  level 3 are seen to be dual to 
the modifications of (82212) for sp(6) a t  level 5. So if a term (3223) occurs in a fusion 
for sp(l0) at level 3 then a term (522) occurs in the corresponding fusion for sp(6) a t  
level 5. 

5. Fusion rules for su(3) 

There is some interest in finding manifestly positive algorithms for computing fusion 
rules. The only case for which such an algorithm is known for all levels is su(2) 
(Gepner and Witten 1986). It is possible t o  find such an algorithm for 4 3 )  using 
the previous modifications. The key observation is that the rank modifications of a 
product of a two-rowed covariant diagram with a two-rowed conhavariant diagram is 
trivial in su(3). Any mixed diagrams with a total of four rows are discarded and all 
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other diagrams are standard. This means that the only complications arise from the 
level modifications, but from duality these are equivalent to products in su(k), and 
these can be found in a manifestly positive way using the Littlewood-Richardson rule. 
After a little work this gives rise to the following algorithm: 

Input. Level t ;  {A, ,  A,}, {ul, U,] irreducible 4 3 )  representations in partition 
notation. 

Output. Irreducible 4 3 )  representations occurring in the fusion of { A l ,  A 2 ]  
and { u l , u 2 ]  at  level k. 

Method. 
(1 )  T has at  most three rows. The number of boxes in row1 2 the number of boxes 

(2) The boxes of T contain ones or twos or are empty. 
(3) The entries of T are weakly increasing across rows (from left to right) and 

(4) There are A, unfilled boxes in row 1, A, unfilled boxes in row 2 and no unfilled 

(5) If ai,j, i = 1 , 2 , 3  j = 1 , 2  is the number of entries j in row i then 

Construct all Young tableaux T with the following properties: 

in row 2 2 the number of boxes in row 3. 

strictly increasing down columns. Empty boxes occur before filled boxes. 

boxes in row 3.  

a l , l  + a2,1 + a3,1 = u1 

'1,Z + '2,2 + a3.2 = u2 

a1,1 I k - A1 

a3,2 5 a z , ~  

if < A I  - A ,  then a2,z = 0 

if = A, - A ,  then aZ,, 5 al,, (6) 

'1.1 + a1,2 5 - '1 +',,I 

'1,Z + a3,2 5 a2,1 + '3,l 

(6) Remove from each resulting tableau any columns of length 3. The lengths of 
the two rows in the final tableaux are the su(3) representation labels. 

5.1. Ezample: level 2 

= c . g + d , e  

Here dots denote a stretched product of the elementary tableaux given in table 4, see 
Cummins el a1 (19QOa). We may use the techniques of this paper together with the 
above algorithm to find a generating function for su(3) fusion rules. The product of 
the elementary tableaux a and f is forbidden since no twos are allowed in row two 
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below an empty box in row one. There is one other syzygy, namely d h  = cg; in this 
case it is necessary to eliminate the  product dh.  This yields: 

G = [(I - z ) ( l  - zL2N2)(1 - zL lMlN2) ( l  - zL1M2)( l  - rL2M2Nl) (1  - zM,N1)l-' 
zM2N2 + X ZLZMI ('+ ( 1  - z L 2 M l ) ( l  - zL ,N, )  (1 - zM2Nz) (1 - zL2M, )  

zL1 Nl  
+ ( 1  - z L , N I ) ( l  - z 2 L 1 M 2 N I N z )  

z 2 ~ ,  M ,  N ,  N~ 
' ( 1  - z2LlM2N,N2)(1  - z M 2 N z )  

which simp!ifier to (Curr?mins e! n! !990h\. I '  

G =  [ ( l - z ) ( l  -zLlNl) ( l -zL2N2)( l -zL2Ml)  

x ( 1  - zLlM2)(1 - z M I N l ) ( l  - zM~NZ)I - '  

(9) 

Table 4. Elementary tableaux for su(3)fuusion rules. Auxiliary labels carry Dynkin 
labels  is their exponents. 

T h e  coefficient of in the Taylor series expansion of G is 
the multiplicity of t,he representat,ion wit,li Dynkin labels (c1, c 2 )  in the fusion at level 
k of (al,az) with ( b l , b z ) ,  again these are Dynkin labels. 
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